Generating Equivalent Algebraic Expressions

ESSENTIAL QUESTION

How can you generate equivalent algebraic expressions and use them to solve real-world problems?

Animated Math
Interactively explore key concepts to see how math works.

Personal Math Trainer
Get immediate feedback and help as you work through practice sets.

Complete these exercises to review skills you will need for this module.

Use of Parentheses

Personal Math Trainer

Online

 Assessment and InterventionEXAMPLE $\quad(6+4) \times(3+8+1)=10 \times 12$
$=120$

Do the operations inside parentheses first.
Multiply.

Evaluate.

1. $11+(20-13)$
2. $(10-7)-(14-12)$
3. $(4+17)-(16-9)$
4. $(23-15)-(18-13)$
5. $8 \times(4+5+7)$
6. $(2+3) \times(11-5)$

Words for Operations

EXAMPLE Write a numerical expression
Think: Quotient means to divide. for the quotient of 20 and 5.
$20 \div 5$
Write 20 divided by 5 .

Write a numerical expression for the word expression.
7. the difference between 42 and 19 \qquad 8. the product of 7 and 12 \qquad
9. 30 more than 20 \qquad 10. 100 decreased by 77 \qquad

Evaluate Expressions

EXAMPLE Evaluate 2(5) - 3^{2}.

$$
\begin{aligned}
2(5)-3^{2} & =2(5)-9 & & \text { Evaluate exponents. } \\
& =10-9 & & \text { Multiply. } \\
& =1 & & \text { Subtract. }
\end{aligned}
$$

Evaluate the expression.

11. $3(8)-15$ \qquad 12. $4(12)+11$ \qquad 13. $3(7)-4(2)$ \qquad
12. $4(2+3)-12$ \qquad 15. $9(14-5)-42$ \qquad 16. $7(8)-5(8)$ \qquad

Reading Start-Up

Visualize Vocabulary

Use the review words to complete the graphic. You may put more

 than one word in each oval.

Understand Vocabulary

Complete the sentences using the preview words.

1. An expression that contains at least one variable is an

Vocabulary

Review Words
base (base)
exponent (exponente)
numerical expression
(expresión numérica)
operations (operaciones)
order of operations (orden
de las operaciones)

Preview Words
algebraic expression
(expresión algebraica)
coefficient (coeficiente)
constant (constante)
equivalent expression
(expresión equivalente)
evaluating (evaluar)
like terms (términos
semejantes)
term (término, en una
expresión)
variable (variable)
2. A part of an expression that is added or subtracted is a \qquad .
3. A \qquad is a specific number whose value does not change.

Active Reading

Key-Term Fold Before beginning the module, create a key-term fold to help you learn the vocabulary in this module. Write the highlighted vocabulary words on one side of the flap. Write the definition for each word on the other side of the flap. Use the key-term fold to quiz yourself on the definitions used in this module.

MODULE 10
Unpocking the Stondards
Understanding the standards and the vocabulary terms in the standards will help you know exactly what you are expected to learn in this module.

COMMON
 CORE
 6.EE. 2

Write, read, and evaluate expressions in which letters stand for numbers.

Key Vocabulary

expression (expresión)
A mathematical phrase that contains operations, numbers, and/or variables.

What It Means to You

You will use models to compare expressions.

UNPACKING EXAMPLE G.EE.2

On a math quiz, Tina scored 3 points more than Yolanda. Juan scored 2 points more than Yolanda and earned 2 points as extra credit.

Write expressions for the numbers of points that Juan and Tina scored. Use y to represent the number of points that Yolanda scored.

> Tina's points: $y+3$
> Juan's points: $y+2+2$

Suppose Yolanda scored 82 points. Use the expressions to find the number of points Tina and Juan scored.

Tina's points: $y+3=82+3=85$ points
Juan's points: $y+2+2=82+2+2=86$ points

What It Means to You

You will use the properties of operations to find an equivalent expression.

UNPACKING EXAMPLE 6.EE. 3

William earns $\$ 13$ an hour working at a movie theater. He worked h hours in concessions and three times as many hours at the ticket counter. Write and simplify an expression for the amount of money William earned.

$\$ 13 \cdot$ hours at concessions $+\$ 13 \cdot$ hours at ticket counter
$13 h+13(3 h)$
$13 h+39 h \quad$ Multiply 13•3h.
$h(13+39) \quad$ Distributive Property
52h Simplify.

ESSENTIAL QUESTION

Writing Algebraic Expressions

An algebraic expression is an expression that contains one or more variables and may also contain operation symbols, such as + or - .

A variable is a letter or symbol used to represent an unknown or unspecified number. The value of a variable may change.

Math On the Spot () my.hrw.com

A constant is a specific number whose value does not change.

150 is a constant and y is a variable.
$x \quad w+n$ $150+y$

In algebraic expressions, multiplication and division are usually written without the symbols \times and \div.

- Write $3 \times n$ as $3 n, 3 \cdot n$, or $n \cdot 3$.
- Write $3 \div n$ as $\frac{3}{n}$.

There are several different ways to describe expressions with words.

	Operation	Addition	Subtraction	Multiplication	Division
$\begin{aligned} & \text { ते } \\ & \text { In } \\ & \text { E} \end{aligned}$	Words	- added to - plus - sum - more than	- subtracted from - minus - difference - less than	- times - multiplied by - product - groups of	- divided by - divided into - quotient

EXAMPLE 1

6.EE.2a, 6.EE.2b

A Write each phrase as an algebraic expression.
The sum of 7 and x
The operation is addition.
The algebraic expression is $7+x$.
The quotient of z and 3
The operation is division.
The algebraic expression is $\frac{z}{3}$.

B Write a phrase for each expression.
11x
The operation is multiplication.
The product of 11 and x
$8-y$
The operation is subtraction.
y less than 8
正

Personal Math Trainer
Online Assessment and Intervention

YOUR TURN

Write each phrase as an algebraic expression.

1. n times 7 \qquad 2. 4 minus y \qquad 3. 13 added to x \qquad

Write a phrase for each expression.
4. $\frac{x}{12}$ \qquad
5. $10 y$ \qquad
6. $c+3$ \qquad

Modeling Algebraic Expressions

Algebraic expressions can also be represented with models.

EXAMPLE 2

Use a bar model to represent each expression.

(A) $7+x \quad$ Combine 7 and x.

B $\frac{z}{3}$ Divide z into 3 equal parts.

YOUR TURN

Draw a bar model to represent each expression.
Personal
7. $t-2$
8. $4 y$

Comparing Expressions Using Models

Algebraic expressions are equivalent if they are equal for all values of the variable. For example, $x+2$ and $x+1+1$ are equivalent.

Katriana and Andrew started the day with the same amount of money. Katriana spent 5 dollars on lunch. Andrew spent 3 dollars on lunch and 2 dollars on a snack after school. Do Katriana and Andrew have the same amount of money left?

STEP 1 Write an algebraic expression to represent the money Katriana has left. Represent the expression with a model.

The variable represents the amount of money both Katriana and Andrew have at the beginning of the day.

STEP 2 Write an algebraic expression to represent the money Andrew has left. Represent the expression with a model.

$x-3-2$
STEP 3 Compare the models.
The models are equivalent, so the expressions are equivalent.
$\div \quad$ Andrew and Katriana have the same amount of money left.

YOUR TURN

Personal Math Trainer and Intervention

Modeling Real-World Situations

You can use expressions to represent real-world situations.

EXAMPLE 4

 COMMON
CORE

CORE
6.EE. 2.6

A Tickets to the water park cost $\$ 53$ per person. Write an expression to show the total cost of tickets for a group of people.

A group of is a clue to multiply. The ticket price of \$53 is a constant. The number of people who need tickets is a variable.

Use x for the number of people.
The algebraic expression for the total cost of tickets is $53 x$.
B Genise has some savings. After babysitting, she adds $\$ 75$ to her savings. How much money has Genise saved?

Adds is a clue to use addition. The $\$ 75$ Genise added to her savings is a constant. The amount of money Genise had saved before is unknown, so use a variable.

Use y for Genise's savings before she adds the babysitting money.
The algebraic expression for Genise's total savings is $y+75$.

YOUR TURN

10. Helen divides up some money to give equally to her four nieces. If d represents the total amount, write an expression to represent how much money each niece receives.

Guided Practice

Write each phrase as an algebraic expression. (Example 1)

1. 3 less than y \qquad 2. The product of 2 and p \qquad
Write a phrase for each algebraic expression.
(Example 1)
2. $y+12$ \qquad 4. $\frac{p}{10}$
3. Draw a bar model to represent the expression $m \div 4$. (Example 2) _

10.1 Independent Practice

10. Write an algebraic expression with the constant 7 and the variable y.

Write each phrase as an algebraic expression.

11. n divided by 8 \qquad
12. p multiplied by 4 \qquad
13. b plus 14 \qquad
14. 90 times x \qquad
15. a take away 16 \qquad
16. k less than 24 \qquad
17. 3 groups of w \qquad
18. the sum of 1 and q \qquad
19. the quotient of 13 and z \qquad
20. c added to 45 \qquad
21. 8 less than w

Write a phrase in words for each algebraic expression.
22. $m+83$ \qquad
23. $42 s$
24. $\frac{9}{d}$
25. $t-29$ \qquad
26. $2+g$ \qquad
27. $11 x$ \qquad
28. $\frac{h}{12}$
29. $5-k$ \qquad
34. The student council is asking people to donate money for the new park outside the school. Everyone who makes the suggested donation amount will be given a bracelet. If everyone donates the suggested amount, and b bracelets are given away, what algebraic expression represents the total amount collected in donations?

35. Mr. Delgado has some young orange trees. He wants to plant them in 46 rows. If t is the total number of orange trees, write an algebraic expression to represent how many trees he can plant in each row.
36. There are 15 violinists in the orchestra this year. Next year, two violinists will leave and some new violinists will join the orchestra. If v is the number of violinists who will join the orchestra, write an expression to represent the number of violinists in the orchestra next year.
37. Jill, Meg, and Beth are sisters. Jill is 2 years younger than Meg. Beth is half as old as Meg. Let m represent Meg's age. Write two other algebraic expressions based on this situation. Tell what each expression represents, and what the variable stands for in each expression.
\qquad
\qquad
38. Multistep Will, Hector, and Lydia volunteered at the animal shelter in March and April. The table shows the number of hours Will and Hector volunteered in March. Let x represent the number of hours Lydia volunteered in March.

March Volunteering	
Will	3 hours
Hector	5 hours

a. Will's volunteer hours in April were equal to his March volunteer hours plus Lydia's March volunteer hours. Write an expression to represent Will's volunteer hours in April.
b. Hector's volunteer hours in April were equal to 2 hours less than his March volunteer hours plus Lydia's March volunteer hours. Write an expression to represent Hector's volunteer hours in April.
c. Did Will and Hector volunteer the same number of hours in April?

Explain.
39. The town of Rayburn received 6 more inches of snow than the town of Greenville. Let g represent the amount of snow in Greenville. Write an algebraic expression to represent the amount of snow in Rayburn.
40. Abby baked 48 dinner rolls and divided them evenly into bags. Let b represent the number of bags. Write an algebraic expression to represent the number of dinner rolls in each bag.
41. Eli is driving at a speed of 55 miles per hour. Let h represent the number of hours that Eli drives at this speed. Write an algebraic expression to represent the number of miles that Eli travels during this time.

\%.....

focus on hicher order thinking
42. Multistep Bob's Bagels offers two breakfast options, as shown.
a. Let x represent the number of customers who order coffee and a bagel. How much money will Bob's Bagels make from these orders?
b. Let y represent the number of customers who order tea and a breakfast sandwich. How much money will Bob's Bagels make from these orders? \qquad
c. Write an algebraic expression for the total amount Bob's Bagels will make from all the coffee and bagel orders and from all the tea and
 breakfast sandwich orders.
43. Represent Real-World Problems The number of shoes in a closet is s.

Work Area

a. How many pairs of shoes are in the closet? Explain.
b. What If? Suppose one of the pairs is missing a shoe. How many shoes are in the closet?
44. Problem Solving Write an expression that has three terms, two different variables, and one constant.
45. Represent Real-World Problems Describe a situation that can be modeled by the expression $x-8$.
46. Critique Reasoning Ricardo says that the expression $y+4$ is equivalent to the expression $1 y+4$. Is he correct? Explain.

Lesson Evaluating 10.2 Expressions

How can you use the order of operations to evaluate algebraic expressions?

Evaluating Expressions

Recall that an algebraic expression contains one or more variables. You can substitute a number for that variable and then find the value of the expression. This is called evaluating the expression.

Math On the Spot

EXAMPLE 1

6.EE.2c

Evaluate each expression for the given value of the variable.
(A) $x-9 ; x=15$

15-9 Substitute 15 for x.
6
Subtract.
When $x=15, x-9=6$.
B $\frac{16}{n} ; n=8$
$\frac{16}{8}$ Substitute 8 for n.

2
Divide.
When $n=8, \frac{16}{n}=2$.
C $0.5 y ; y=1.4$
0.5(1.4) Substitute 1.4 for y.
0.7

Multiply.
When $y=1.4,0.5 y=0.7$.
D $6 k ; k=\frac{1}{3}$
HINT: Think of 6 as $\frac{6}{1}$.
$6\left(\frac{1}{3}\right) \quad$ Substitute $\frac{1}{3}$ for k.
2 Multiply.
When $k=\frac{1}{3}, 6 k=2$.

YOUR TURN

Personal Math Trainer

Evaluate each expression for the given value of the variable.

1. $4 x ; x=8$ \qquad 2. $6.5-n ; n=1.8$ \qquad 3. $\frac{m}{6} ; m=18$
\qquad

Using the Order of Operations

Expressions may have more than one operation or more than one variable. To evaluate these expressions, substitute the given value for each variable and then use the order of operations.

EXAMPLE R

Evaluate each expression for the given value of the variable.

A $4(x-4) ; x=7$
4(7-4) Substitute 7 for x.
4(3) Subtract inside the parentheses.
12
Multiply.
When $x=7,4(x-4)=12$.
B $4 x-4 ; x=7$
4(7) - $4 \quad$ Substitute 7 for x.
28-4 Multiply.
24 Subtract.
When $x=7,4 x-4=24$.
C $w-x+y ; w=6, x=5, y=3$
(6) - (5) + (3) Substitute 6 for $w, 5$ for x, and 3 for y.

Math Talk

Mathematical Practices
Is $w-x+y$ equivalent
to $w-y+x$? Explain any
difference in the order the math operations are performed.
(D $x^{2}-x ; x=9$
$(9)^{2}-(9) \quad$ Substitute 9 for each x.
81-9 Evaluate exponents.
72 Subtract.
When $x=9, x^{2}-x=72$.

YOUR TURN

Evaluate each expression for $\boldsymbol{n}=5$.
4. $3(n+1)$ \qquad 5. $4(n-4)+14$ \qquad 6. $6 n+n^{2}$ \qquad

Personal Math Trainer

Evaluate each expression for $a=3, b=4$, and $c=6$.
7. $a b-c$ \qquad 8. $b c+5 a$ \qquad 9. $a^{3}-(b+c)$

Evaluating Real-World Expressions

\qquad

You can evaluate expressions to solve real-world problems.

EXAMPLE 3

(3001 Worl

comnow
6.EE.2c

The expression $1.8 c+32$ gives the temperature in degrees Fahrenheit for a given temperature in degrees Celsius c. Find the temperature in degrees Fahrenheit that is equivalent to $30^{\circ} \mathrm{C}$.

STEP 1 Find the value of c.

$$
\mathrm{C}=30^{\circ} \mathrm{C}
$$

STEP 2 Substitute the value into the expression.
$1.8 c+32$
$1.8(30)+32$ Substitute 30 for c.
$54+32 \quad$ Multiply.

- 86

Add.
$86^{\circ} \mathrm{F}$ is equivalent to $30^{\circ} \mathrm{C}$.

YOUR TURN

10. The expression $6 x^{2}$ gives the surface area of a cube, and the expression x^{3} gives the volume of a cube, where x is the length of one side of the cube. Find the surface area and the volume of a cube with a side length of 2 m .
$S=$ \qquad $m^{2} ; V=$ \qquad m^{3}
11. The expression $60 m$ gives the number of seconds in m minutes. How many seconds are there in 7 minutes?
\qquad seconds

Guided Practice

Evaluate each expression for the given value(s) of the variable(s).
(Examples 1 and 2)

1. $x-7 ; x=23$ \qquad
2. $\frac{8}{t} ; t=4$ \qquad
3. $3 a-b ; a=4, b=6$ \qquad
4. $9+m ; m=1.5$
5. $5(6.2+z) ; z=3.8$ \qquad
6. $\frac{1}{2} w+2 ; w=\frac{1}{9}$

Women's Soccer Game Prices	
Student tickets	$\$ 6$
Nonstudent tickets	$\$ 12$
Parking	$\$ 5$

a. Write an expression that represents the cost of one carful of nonstudent soccer fans. Use x as the number of people who rode in the car and attended the game.
\qquad is an expression that represents the cost of one carful of nonstudent soccer fans.
b. Since there are three attendees, evaluate the expression $12 x+5$ for $x=3$.
$12\left(_\right)+5=$ \qquad $+5=$ \qquad
The family spent \qquad to attend the game.
8. Stan wants to add trim all around the edge of a rectangular tablecloth that measures 5 feet long by 7 feet wide. The perimeter of the rectangular tablecloth is twice the length added to twice the width. How much trim does Stan need to buy? (Example 3)
a. Write an expression that represents the perimeter of the rectangular tablecloth. Let / represent the length of the tablecloth and w represent its width. The expression would be \qquad .
b. Evaluate the expression $P=2 w+2 /$ for $I=5$ and $w=7$.
\qquad $)+2($) $=14+$

Stan bought \qquad of trim to sew onto the tablecloth.

ESSENTIAL QUESTION CHECK-IN

9. How do you know the correct order in which to evaluate algebraic expressions?

10.2 Independent Practice

10. The table shows ticket prices at the Movie 16 theater. Let a represent the number of adult tickets, c the number of children's tickets, and s the number of senior citizen tickets.

Movie 16 Ticket Prices	
Adults	$\$ 8.75$
Children	$\$ 6.50$
Seniors	$\$ 6.50$

a. Write an expression for the total cost of the three types of tickets.
\qquad
\qquad
b. The Andrews family bought 2 adult tickets, 3 children's tickets, and 1 senior ticket. Evaluate your expression in part a to find the total cost of the tickets.
c. The Spencer family bought 4 adult tickets and 2 children's tickets. Did they spend the same as the Andrews family? Explain.
11. The area of a triangular sail is given by the expression $\frac{1}{2} b h$, where b is the length of the base and h is the height. What is the area of a triangular sail in a model sailboat when $b=12$ inches and $h=7$ inches?
$A=$ \qquad in. ${ }^{2}$
12. Ramon wants to balance his checking account. He has \$2,340 in the account. He writes a check for $\$ 140$. He deposits a check for $\$ 268$. How much does Ramon have left in his checking account? \qquad
16. The volume of a pyramid with a square base is given by the expression $\frac{1}{3} s^{2} h$, where s is the length of a side of the base and h is the height. Find the volume of a pyramid with a square base of side length 24 feet and a height of 30 feet.

\qquad

H.OT.
 focus on hicher order thinking

17. Draw Conclusions Consider the expressions $3 x(x-2)+2$ and $2 x^{2}+3 x-12$.
a. Evaluate each expression for $x=2$ and for $x=7$. Based on your results, do you know whether the two expressions are equivalent? Explain.
\qquad
\qquad
\qquad
\qquad
\qquad
b. Evaluate each expression for $x=5$. Based on your results, do you know whether the two expressions are equivalent? Explain.
\qquad
\qquad
\qquad
\qquad
\qquad
18. Critique Reasoning Marjorie evaluated the expression $3 x+2$ for $x=5$ as shown:

$$
3 x+2=35+2=37
$$

What was Marjorie's mistake? What is the correct value of $3 x+2$ for $x=5$?

LEs50N Generating Equivalent Expressions

EXPLORE ACTIVITY 1

Identifying Equivalent Expressions

One way to test whether two expressions might be equivalent is to evaluate them for the same value of the variable.

Match the expressions in List A with their equivalent expressions in List B.

List A	List B
$5 x+65$	$5 x+1$
$5(x+1)$	$5 x+5$
$1+5 x$	$5(13+x)$

A Evaluate each of the expressions in the lists for $x=3$.

B Which pair(s) of expressions have the same value for $x=3$?

C How could you further test whether the expressions in each pair are equivalent?

D Do you think the expressions in each pair are equivalent? Why or why not?

Reflect

1. Error Analysis Lisa evaluated the expressions $2 x$ and x^{2} for $x=2$ and found that both expressions were equal to 4 . Lisa concluded that $2 x$ and x^{2} are equivalent expressions. How could you show Lisa that she is incorrect?

EXPLORE ACTIVITY 2

Modeling Equivalent Expressions

You can also use models to determine if two expressions are equivalent. Algebra tiles are one way to model expressions.

Algebra Tiles
$\dagger=1$
$+\quad=x$

Determine if the expression $3(x+2)$ is equivalent to $3 x+6$.
A Model each expression using algebra tiles.

B The model for $3(x+2)$ has \qquad x tiles and \qquad 1 tiles.

The model for $3 x+6$ has \qquad x tiles and \qquad 1 tiles.

C Is the expression $3(x+2)$ equivalent to $3 x+6$? Explain.
\qquad
\qquad

Reflect

2. Use algebra tiles to determine if $2(x+3)$ is equivalent to $2 x+3$. Explain your answer.

Writing Equivalent Expressions Using Properties

Properties of operations can be used to identify equivalent expressions.

Properties of Operations	Examples
Commutative Property of Addition: When adding, changing the order of the numbers does not change the sum.	$3+4=4+3$
Commutative Property of Multiplication: When multiplying, changing the order of the numbers does not change the product.	$2 \times 4=4 \times 2$
Associative Property of Addition: When adding more than two numbers, the grouping of the numbers does not change the sum.	$(3+4)+5=3+(4+5)$
Associative Property of Multiplication: When multiplying more than two numbers, the grouping of the numbers does not change the product.	$(2 \times 4) \times 3=2 \times(4 \times 3)$
Distributive Property: Multiplying a number by a sum or difference is the same as multiplying by each number in the sum or difference and then adding or subtracting.	$6(2+4)=6(2)+6(4)$ $8(5-3)=8(5)-8(3)$
Identity Property of Addition: Adding zero to a number does not change its value.	$9+0=9$
Identity Property of Multiplication: Multiplying a number by one does not change its value.	$1 \times 7=7$

EXAMPLE 1

 COMMONCORE

Use a property to write an expression that is equivalent to $x+3$.
The operation in the expression is addition.
You can use the Commutative Property of Addition to write an equivalent expression: $x+3=3+x$.

YOUR TURN

For each expression, use a property to write an equivalent expression. Tell which property you used.
3. $(a b) c=$ \qquad
4. $3 y+4 y=$ \qquad
5. 6×7 \qquad
() my.hrw.com

Animated Math

Identifying Equivalent Expressions Using Properties

EXAMPLE 2

Use the properties of operations to determine if the expressions are equivalent.

A $3(x-2) ; 3 x-6$

$$
3(x-2)=3 x-6 \quad \text { Distributive Property }
$$

$3(x-2)$ and $3 x-6$ are equivalent expressions.
B $2+x ; \frac{1}{2}(4+x)$

$$
\begin{aligned}
\frac{1}{2}(x+4) & =\frac{1}{2} x+2 & & \text { Distributive Property } \\
& =2+\frac{1}{2} x & & \text { Commutative Property }
\end{aligned}
$$

$2+x$ does not equal $2+\frac{1}{2} x$.
They are not equivalent expressions.

YOUR TURN

Use the properties of operations to determine if the expressions are equivalent.
6. $6 x-8 ; 2(3 x-5)$
7. $2-2+5 x ; 5 x$
\qquad
\qquad
\qquad
8. Jamal bought 2 packs of stickers and 8 individual stickers. Use x to represent the number of stickers in a pack of stickers and write an expression to represent the number of stickers Jamal bought. Is the expression equivalent to $2(4+x)$? Check your answer with algebra tile models.

Personal Math Trainer Online Assessment and Intervention

Generating Equivalent Expressions

Parts of an algebraic expression			
terms	The parts of the expression that are separated by + or - signs	$12+3 y^{2}+4 x+2 y^{2}+4$	
coefficients	Numbers that are multiplied by at least one variable	$12+3 y^{2}+4 x+2 y^{2}+4$	
like terms	Terms with the same variable(s) raised to the same power(s)	$12+3 y^{2}+4 x+2 y^{2}+4$	

When an expression contains like terms, you can use properties to combine the like terms and write an equivalent expression.

EXAMPLE 3

6.EE.3, 6.EE.2b

Combine like terms.

$$
\begin{aligned}
& \text { (A) } 6 x^{2}-4 x^{2} \\
& 6 x^{2}-4 x^{2}=x^{2}(6-4) \\
& =x^{2}(2) \\
& =2 x^{2} \\
& 6 x^{2}-4 x^{2}=2 x^{2} \\
& 6 x^{2} \text { and } 4 x^{2} \text { are like terms. } \\
& \text { Distributive Property } \\
& \text { Subtract inside the parentheses. } \\
& \text { B } 3 \boldsymbol{a}+2(b+5 a) \\
& 3 a+2(b+5 a)=3 a+2 b+2(5 a) \\
& =3 a+2 b+(2 \cdot 5) a \\
& =3 a+2 b+10 a \quad \text { Multiply } 2 \text { and } 5 \text {. } \\
& =3 a+10 a+2 b \quad \text { Commutative Property of Addition } \\
& =(3+10) a+2 b \quad \text { Distributive Property } \\
& =13 a+2 b \quad \text { Add inside the parentheses. } \\
& 3 a+2(b+5 a)=13 a+2 b \\
& \text { C } y+11 x+7 y-7 x \\
& y \text { and } 7 y \text { are like terms; } \\
& 11 \times \text { and } 7 x \text { are like terms. } \\
& y+11 x+7 y-7 x=y+7 y+11 x-7 x \\
& =(1+7) y+(11-7) x \\
& =8 y+4 x \\
& y+11 x+7 y-7 x=8 y+4 x \\
& \text { Commutative Property } \\
& \text { Distributive Property } \\
& \text { Simplify inside parentheses. }
\end{aligned}
$$

Personal Math Trainer

Combine like terms.

9. $8 y-3 y=$ \qquad 10. $6 x^{2}+4\left(x^{2}-1\right)=$
10. $4 a^{5}-2 a^{5}+4 b+b=$
11. $8 m+14-12+4 n=$
\qquad

Guided Practice

1. Evaluate each of the expressions in the list for $y=5$. Then, draw lines to match the expressions in List A with their equivalent expressions in List B. (Explore Activity 1)

List A

$4+4 y=$ \qquad
$4(y-1)=$ \qquad $4 y+1=$ \qquad
2. Determine if the expressions are equivalent by comparing the models. (Explore Activity 2) \qquad

$$
\begin{aligned}
& 4 y-4= \\
& 4(y+1)= \\
& 1+4 y=
\end{aligned}
$$

For each expression, use a property to write an equivalent expression. Tell which property you used. (Example 1)
3. $a b=$ \qquad
4. $5(3 x-2)=$ \qquad

Use the properties of operations to determine if each pair of expressions is equivalent. (Example 2)
5. $\frac{1}{2}(4-2 x) ; 2-2 x$ \qquad 6. $\frac{1}{2}(6 x-2) ; 3-x$

Combine like terms. (Example 3)
7. $32 y+12 y=$ \qquad 8. $12+3 x-x-12=$ \qquad

ESSENTIAL QUESTION CHECK-IN
9. Describe two ways to write equivalent algebraic expressions.

10.3 Independent Practice

For each expression, use a property to write an equivalent expression. Tell which property you used.
10. $c d=$ \qquad
12. $4(2 x-3)=$ \qquad 13. $2+(a+b)=$ \qquad
\qquad
14. Draw algebra tile models to prove that $4+8 x$ and $4(2 x+1)$ are equivalent.

Combine like terms.

15. $7 x^{4}-5 x^{4}=$ \qquad
16. $6 b+7 b-10=$ \qquad
17. $y+4+3(y+2)=$ \qquad
18. $3 y^{2}+3\left(4 y^{2}-2\right)=$ \qquad
19. $0.5\left(x^{4}-3\right)+12=$ \qquad
20. $32 y+5 y=$ \qquad
21. $2 x+3 x+4=$ \qquad
22. $7 a^{2}-a^{2}+16=$ \qquad
23. $z^{2}+z+4 z^{3}+4 z^{2}=$ \qquad
24. $\frac{1}{4}(16+4 p)=$
25. Justify Reasoning Determine whether $3 x+12+x$ is equivalent to $4(3+x)$. Use properties of operations to justify your answer.
\qquad
\qquad
26. William earns $\$ 13$ an hour working at a movie theater. Last week he worked h hours at the concession stand and three times as many hours at the ticket counter. Write and simplify an expression for the amount of money William earned last week.
27. Multiple Representations Use the information in the table to write and simplify an expression to find the total weight of the medals won by the top medal-winning nations in the 2012 London Olympic Games. The three types of medals have different weights.

2012 Summer Olympics			
	Gold	Silver	Bronze
United States	46	29	29
China	38	27	23
Great Britain	29	17	19

Write an expression for the perimeters of each given figure. Simplify the expression.
28. \qquad 29. \qquad

Mo. m^{5} focus on hicher order thinking

30. Problem Solving Examine the algebra tile model.
a. Write two equivalent expressions for the model. \qquad

b. What If? Suppose a third row of tiles identical to the ones above is added to the model. How does that change the two expressions?
31. Communicate Mathematical Ideas Write an example of an expression that cannot be simplified, and explain how you know that it cannot be simplified.
32. Problem Solving Write an expression that is equivalent to $8(2 y+4)$ that can be simplified.

Ready to Go On?

10.1 Modeling and Writing Expressions

Write each phrase as an algebraic expression.

Personal Math Trainer

1. p divided by 6 \qquad -
2. the sum of 185 and h \qquad
3. 65 less than j
4. the product of 16 and g \qquad
5. Let x represent the number of television show episodes that are taped in a season. Write an expression for the number of episodes taped in 4 seasons. \qquad

10.2 Evaluating Expressions

Evaluate each expression for the given value of the variable.

6. $8 p ; p=9$
7. $11+r ; r=7$ \qquad
8. $4(d+7) ; d=2$ \qquad 9. $\frac{60}{m} ; m=5$ \qquad
9. To find the area of a triangle, you can use the expression $b \times h \div 2$, where b is the base of the triangle and h is its height. What is the area of a triangle with a base of 6 and a height of 8 ? \qquad

10.3 Generating Equivalent Expressions

11. Draw lines to match the expressions in List A with their equivalent expressions in List B.

List A	List B
$7 x+14$	$7(1+x)$
$7+7 x$	$7 x-7$
$7(x-1)$	$7(x+2)$

ESSENTIAL QUESTION

12. How can you solve problems involving equivalent expressions?

Selected Response

1. Which expression represents the product of 83 and x ?
(A) $83+x$
(B) $83 \div x$
(C) $83 x$
(D) $83-x$
2. Which phrase describes the algebraic expression $\frac{r}{9}$?
(A) the product of r and 9
(B) the quotient of r and 9
(C) 9 less than r
(D) r more than 9
3. Rhonda was organizing photos in a photo album. She took 60 photos and divided them evenly among p pages. Which algebraic expression represents the number of photos on each page?
(A) $p-60$
(C) $\frac{p}{60}$
(B) $60-p$
(D) $\frac{60}{p}$
4. Using the algebraic expression $4 n+6$, what is the greatest whole-number value of n that will give you a result less than 100 ?
(A) 22
(C) 24
(B) 23
(D) 25
5. Evaluate $7 w-14$ for $w=9$.
(A) 2
(B) 18
(C) 49
(D) 77
6. Katie has read 32% of a book. If she has read 80 pages, how many more pages does Katie have left to read?
(A) 40
(B) 170
(C) 200
(D) 250
7. The expression $12(x+4)$ represents the total number of CDs Mei bought in April and May at $\$ 12$ each. Which property is applied to write the equivalent expression $12 x+48$?
(A) Associative Property of Addition
(B) Associative Property of Multiplication
(C) Commutative Property of Multiplication
(D) Distributive Property

Mini-Task

8. You can convert a temperature given in degrees Celsius to a Fahrenheit temperature by using the expression $9 x \div 5+32$, where x is the Celsius temperature.
a. Water freezes when the temperature is $0^{\circ} \mathrm{C}$. At what Fahrenheit temperature does water freeze? \qquad
b. Water boils at $100^{\circ} \mathrm{C}$. At what temperature does water boil in degrees Fahrenheit?
c. The temperature of some water is $15^{\circ} \mathrm{C}$. What is the Fahrenheit temperature? \qquad
